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Abstract: Regional frequency analysis is needed to estimate hydrological quantiles at ungauged sites or to improve 

estimates at sites with short record lengths, by transferring information from gauged sites. Some regional procedures, such as 

the index-flood method, require the delineation of homogeneous regions as a basic step for their application. The 10 

homogeneity of these delineated regions is usually tested providing a yes/no decision. However, complementary measures 

that are able to quantify the degree of heterogeneity of a region are needed to compare regions, evaluate the impact of 

particular sites and rank the performance of different delineating methods. Well-known existing heterogeneity measures are 

not well-defined for ranking regions, as they entail drawbacks such as assuming a given probability distribution, providing 

negative values and being affected by the region size. Therefore, a framework for defining and assessing desirable properties 15 

of a heterogeneity measure in the regional hydrological context is needed. In the present study, such a framework is 

proposed through a four-step procedure based on Monte Carlo simulations. Several heterogeneity measures, some of which 

commonly known, others derived from recent approaches or adapted from other fields are presented and developed to be 

assessed. The assumption-free Gini Index applied on the at-site L-variation coefficient (L-CV) over a region led to the best 

results. The measure of the percentage of sites for which the regional L-CV is outside the confidence interval of the at-site L-20 

CV is also found to be relevant, as it leads to more stable results regardless of the regional L-CV value. Thus, the application 

of both measures is recommended in practice.  

Keywords: hydrology; regional analysis; ungauged site estimate; heterogeneity degree; L-variation coefficient; Gini Index. 

1 Introduction 

Regional hydrological frequency analysis (RHFA) is needed to estimate extreme hydrological events when no hydrological 25 

data are available at a target site or to improve at-site estimates especially for short data records (e.g. Burn and Goel, 2000; 

Requena et al., 2016). Delineation of homogeneous regions is a basic step for the application of a number of regional 

procedures such as the well-known index-flood method (Dalrymple, 1960; Chebana and Ouarda, 2009). Such a method 

employs information from sites within a given homogeneous region to estimate required quantiles at a given target site. The 

heterogeneity concept has been considered in a number of fields, including ecology, geology and information sciences (e.g. 30 
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Li and Reynolds, 1995; Mays et al., 2002; Wu et al., 2008). However, the present paper focuses on the heterogeneity concept 

in hydrology derived from ‘regional homogeneity’. In this regard, regional homogeneity is often defined as the condition that 

floods at all the sites in a region have the same probability distribution except for a scale factor (e.g. Cunnane, 1988).  

In order to delineate homogeneous regions, numerous studies have proposed and compared similarity measures entailing 

climatic (e.g. mean annual rainfall), hydrologic (e.g. mean daily flow), physiographic (e.g. drainage area) and combined 5 

descriptors (see Ali et al., 2012) to be used as input to statistical tools for grouping sites. The selection of these descriptors is 

carried out by stepwise regression, principal components or canonical correlation, among others (e.g. Brath et al., 2001; 

Ouarda et al., 2001; Ilorme and Griffis, 2013). Known statistical tools, such as cluster analysis, or new approaches, such as 

the affinity propagation algorithm, are considered to form homogeneous regions based on the previously identified similarity 

measures (e.g. Burn, 1989; Ouarda and Shu, 2009; Ali et al., 2012; Wazneh et al., 2015). Moreover, many tests have been 10 

introduced and compared throughout the literature to decide whether a given delineated region can be considered as 

homogenous (e.g. Dalrymple, 1960; Wiltshire, 1986; Scholz and Stephens, 1987; Chowdhury et al., 1991; Fill and Stedinger, 

1995; Viglione et al., 2007). The homogeneity test proposed by Hosking and Wallis (1993) is usually utilised. In this test the 

statistic H is related to the variability of the at-site L-variation coefficient (L-CV) over a region (e.g. Alila, 1999; Burn and 

Goel, 2000; Castellarin et al., 2001; Shu and Burn, 2004; Smith et al., 2015).  15 

In practice, apart from determining if a region can be considered as homogeneous by making a yes/no binary decision (e.g. 

Warner, 2008) generally based on a significance test, the quantification of the degree of heterogeneity is also necessary. 

Heterogeneity measures are required for such a task. Two approaches can be considered in this regard: (i) the use of 

heterogeneity measures for determining the effect of the departure from the homogeneous region assumption on the quantile 

estimate; and (ii) the use of heterogeneity measures for ranking regions according to their degree of heterogeneity. Regarding 20 

the former, quantifying the degree of heterogeneity provides a notion of the inaccuracy incurred through the estimation of 

quantiles by a regional method, for which homogeneous regions are assumed but a ‘non-perfect’ homogeneous region is 

used. This approach has already been studied, being closely related to the homogeneity test notion (e.g. Hosking and Wallis, 

1997; Wright et al., 2014), which is further explained below.  

The second approach corresponds to the focus of the present paper. Through this second approach, different regional 25 

delineation methods can be properly compared to identify the best one. This will be the method delineating the ‘most 

homogeneous region’. Also, heterogeneity measures can be helpful in ranking potential homogeneous regions formed by 

removing discordant sites. By analogy with distribution selection (e.g. Laio et al., 2009), the concept of heterogeneity 

measure considered here plays the role of a ‘model selection criterion’, such as the Akaike Information Criterion (Akaike, 

1973); whereas the homogeneity test plays the role of a ‘goodness-of-fit test’. The former ranks delineated regions by 30 

providing unambiguous results to identify the best one in terms of heterogeneity; whereas the latter indicates if the given 

region can be considered as homogeneous or not.  

In relation to the use of heterogeneity measures as a proxy for quantile error (approach (i)), the test statistic H is indeed 

considered by Hosking and Wallis (1993) as a heterogeneity measure for which given thresholds are established. These 
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thresholds are obtained as a trade-off between quantile error due to regional heterogeneity and gain obtained by considering 

the whole regional information instead of that of a sub-region or at-site data. Therefore, instead of providing a binary 

decision based on a given significance level (α), e.g. reject the region as homogenous when H > 1.64 for α = 5%; as a more 

general guideline the region is considered as ‘acceptably homogeneous’ if 1H , ‘possibly heterogeneous’ if 21  H  

or ‘definitely heterogeneous’ if 2H . Recently, Wright et al. (2015) compared the performance of five statistics in this 5 

regard: the three L-moment-based statistics of Hosking and Wallis (1993) and two non-parametric statistics, the Anderson-

Darling and the Durbin-Knott test statistic.  

A number of studies have proposed and compared methods in which different combinations of similarity measures and/or 

statistical tools are considered for delineating regions (references below). As a consequence of the non-availability of a well-

justified heterogeneity measure for comparison purposes (approach (ii)), studies usually consider measures based either on H 10 

or on errors from the quantile estimate step. Shu and Burn (2004) utilised the percentage of (initially) homogeneous regions 

and the mean of H over regions obtained by each considered method for distinguishing the best one. Farsadnia et al. (2014) 

identified the best grouping method among those analysed as that leading to the lowest number of ‘possibly homogeneous’ 

and ‘heterogeneous’ regions according to H.  Ilorme and Griffis (2013) used an H weighted average regarding the data 

length of each region to compare regions obtained by removing discordant sites based on different criteria.  15 

However, H is not well-defined for ranking regions according to their heterogeneity degree, as it possesses several 

drawbacks. First, it is originally built as a significance test. Thus, its value depends on specific assumptions that may not be 

fulfilled in practice, such as assuming a regional kappa distribution that even though flexible may not characterise the data. 

Second, it may entail negative values for particular situations, which may distort results making difficult the suitable ranking 

of regions. Third, it is affected by the number of sites in the region, tending to obtain small heterogeneity values for small 20 

regions even if they are not homogeneous (Hosking and Wallis, 1997, page 66-67). This tends to complicate comparison 

among regions with different sizes. 

Instead of using measures based on H, other studies quantified the performance of different delineating methods by 

comparing quantile errors (e.g. Castellarin et al., 2001; Ouali et al., 2015). However, the latter approach implies performing 

the last step of a regional analysis (i.e. quantile estimation) when dealing with an initial step (i.e. region delineation); which 25 

involves additional calculations, uncertainty due to the assumption of a given parent distribution for the data and a non direct 

assessment of the delineation method. A different approach was recently proposed by Viglione (2010) and Das and Cunnane 

(2011) regarding the use of the confidence intervals for L-CV to assess heterogeneity, for which details are given in Sect. 3.  

Therefore, a general framework is needed to allow defining and assessing desirable properties of a heterogeneity measure in 

the regional hydrological context in order to properly identify a suitable measure. Such a measure should overcome the 30 

aforementioned drawbacks: it should be free of assumptions, positive, not affected by region size and focused on the 

delineation step. Also, it should allow ranking the heterogeneity degree of several regions to identify ‘the most homogeneous 

region’ or to assess the effect of some sites on the ‘heterogeneity degree’ of the region. In the present paper, such a 

framework is proposed under an evaluation of the heterogeneity measures based on Monte Carlo simulations. Several 
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measures extracted from literature in hydrology and other fields are presented and/or adapted to be assessed as well-justified 

heterogeneity measures. The present paper is organised as follows. The procedure for the assessment of a heterogeneity 

measure is presented in Sect. 2. The heterogeneity measures considered to be checked by the proposed procedure are 

introduced in Sect. 3. Results of the assessment are illustrated in Sect. 4. Discussion of results is presented in Sect. 5 and 

conclusions are summarised in Sect. 6.  5 

2 Assessment of a heterogeneity measure  

A simulation-based procedure consisting of four steps is proposed to study the behaviour of a given heterogeneity measure 

(generically denoted Z) regarding its desirable properties in the regional hydrological context. The steps of the procedure are: 

(i) sensitivity analyses of varying factors involved in the definition of a region; (ii) success rate in identifying the most 

heterogeneous region; (iii) evolution of the variability for the Z average with respect to the degree of regional heterogeneity; 10 

and (iv) effect of discordant sites. The first step is applied to all the considered heterogeneity measures (presented in Sect. 3), 

while the remaining steps are applied to those not entailing unacceptable results from the first step. Some elements of the 

procedure are inspired and adapted from studies where different aims were sought (e.g. Hosking and Wallis, 1997; Viglione 

et al., 2007; Chebana and Ouarda, 2007; Castellarin et al., 2008; Wright et al., 2015). 

Before further describing the aforementioned steps and desirable properties, elements of the framework needed for 15 

performing the assessment procedure are presented. The procedure is based on synthetic regions generated through Monte 

Carlo simulations from a representative parent distribution commonly used in frequency analysis, the Generalised Extreme 

Value (GEV) distribution. A region is defined by its number of sites (N), at-site data length (n), regional average L-CV (𝑅), 

regional average L-skewness coefficient (3
𝑅) and a unit regional sample mean. The heterogeneity of a given region may be 

due to differences in any feature of the at-site frequency distribution among sites. In particular the L-CV, which is a 20 

dimensionless measure of the dispersion of the distribution that is also related to the slope of the associated flood frequency 

curve, has been considered as representative of such differences (e.g. Stedinger and Lu, 1995; Viglione, 2010). In the present 

study, heterogeneous regions are simulated using the heterogeneity rate , defined as  = (max𝑖(𝜏𝑖) − min𝑖(𝜏𝑖))/𝜏𝑅 (e.g. 

Hosking and Wallis, 1997; Das and Cunnane, 2012)
.
, where 𝑖  is the L-CV at site i with i = 1, …, N. Since in practice large 

values of the L-skewness coefficient (3) are related to large values of the L-CV  (Hosking and Wallis, 1997, page 68), the 25 

same heterogeneity rate of  is considered for 3. A region is defined as homogeneous for  = 0%, implying that 𝑖  and 3
𝑖  are 

the same for all the sites in the region (i.e. 𝑖 = 𝑅  
and 3

𝑖 = 3
𝑅). The heterogeneity of a given region increases as  increases 

from 0% to 100%. This implies that 
i
 and 3

𝑖  vary linearly. We then have for the first site 1 = 𝑅 − 𝑅 𝛾 2⁄  and for the last 

site 𝑁 = 𝑅 + 𝑅 𝛾 2⁄ . The same can be written for 3
𝑖  .  

Finally, a given region consists of at-site data generated from a GEV distribution with parameters obtained through at-site L-30 

moments. At-site data are standardised by their sample mean to frame them in the regional context (e.g. Bocchiola et al., 

2003; Requena et al., 2016). Note that heterogeneity measures directly based on L-moments lead to the same results for 
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standardised or non-standardised data. A region with N = 15, n = 30, 𝑅  
= 0.2 and 3 

𝑅 = 0.2 is considered as a reference for the 

simulation study. Hereafter, the value of 3 is (usually) omitted, as 3 is considered to have the same value as . The number 

of simulations NS of a given region is taken to be equal to 500, which is considered large enough to obtain robust results. 

These fixed values of the factors, as well as their varying values used below, are selected according to the literature and with 

the aim of providing a general view of the behaviour of the measures without excessively complicating the simulation study.  5 

2.1. Sensitivity analyses   

The first step of the assessment of a heterogeneity measure Z is the analysis of the effect of varying factors involved in the 

definition of a region. This step is performed through sensitivity analysis to identify if the behaviour of Z is acceptable in 

relation to what is ideally expected from a heterogeneity measure.  

Effect of the heterogeneity rate: The degree of heterogeneity of a region is the aimed value to be quantified by Z. A 10 

surrogate of such a degree of regional heterogeneity is the heterogeneity rate , which is used to initially define the 

heterogeneity of the simulated region to be evaluated by Z. Hence, Z should increase with . This analysis is performed by 

obtaining Z for  = 0%, 10% ,…, 90%, 100% over NS = 500, keeping the remaining values of the reference region (i.e. N = 

15; n = 30; 𝑅 = 0.2).  

Effect of the number of sites: The size of a region, represented by the number of sites N, is a relevant factor to the degree of 15 

its heterogeneity. A large N is required to properly estimate quantiles associated with high return periods, as more data are 

available; yet homogeneous regions are more difficult to obtain for large N due to more potential dissimilarities between 

sites (Ouarda et al., 2001; Chebana and Ouarda, 2007). Nevertheless, by definition Z should not be affected by N, as it 

should provide the same results for regions with a different size but the same degree of heterogeneity. Therefore, the smaller 

is the influence of N on Z the better Z is. This analysis is performed by obtaining Z for N = 5, 10, 15, 20, 25, 30, 40, 50, 60, 20 

70 over NS = 500, keeping the remaining values of the reference region (i.e. n = 30; 𝑅 = 0.2). Two different values of the 

heterogeneity rate ( = 0% and 50%) are also considered to identify if the behaviour of Z changes depending on the degree of 

heterogeneity. 

Effect of the regional average L-moment ratios: Z should ideally provide similar results for regions entailing the same 

degree of heterogeneity, regardless of the values of 𝑅  
and 3 

𝑅 , in order to provide an appropriate comparison and ranking of 25 

the regions. For instance, two regions with sites generated from a different 𝑅  value but considering the same value  = 0% 

should entail similar Z values, as both are ‘perfectly’ homogeneous. However, such an output may not be easy to obtain due 

to the fact that 𝑅  is associated with a measure of dispersion. Thus, the smaller the influence of 𝑅 and 3 
𝑅  on Z the better Z 

will be. This analysis is performed by comparing the results of 𝑅 = 0.2, which is related to the reference region, with those 

obtained by 𝑅 = 0.4. It is done by varying the heterogeneity rate  and by varying the number of sites N. Recall that 3 
𝑅  is 30 

considered to have the same value as 𝑅 . 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-136, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 5 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 

 

Effect of the record length: The amount of available at-site information, represented by the data length n, is associated with 

the accuracy of the value of Z. The longer n is the better will be the information provided by each site to determine the 

regional degree of heterogeneity. Therefore, the analysis of the effect of n should be focused on identifying the minimum n 

required to obtain reliable values of Z. This analysis is performed by obtaining Z for n = 10, 20,…, 90, 100 over NS = 500, 

keeping the remaining values of the reference region (i.e. N = 15; 𝑅 = 0.2). Two different values of the heterogeneity rate ( 5 

= 0% and 50%) are also considered to identify if the behaviour of Z changes depending on the degree of heterogeneity. 

2.2. Success rate 

The second step in the assessment of Z is the evaluation of its success rate (SR) for identifying the most heterogeneous 

region. Note that the SR notion is commonly used in a number of fields such as biology (e.g. Canaves et al., 2004). Without 

loss of generality, such an evaluation is performed on two regions A and B. For  A < B,  SR is defined as the ratio of the 10 

number of samples simulated from a given region A and a given region B, for which Z correctly identifies B as the most 

heterogeneous region, to the total number of simulated samples. Thus, the larger SR is the better Z will be. The aim is to 

verify the ability of Z to compare regions with different degrees of heterogeneity, when entailing or not different 

characteristics (i.e.,  
A ≠  

B or   
A =  

B, and NA ≠ NB or NA = NB). A large set of 48 cases is considered to obtain a wide 

view of the behaviour of Z, as combination of the following factor values: A = 0%, 30%, 50%, 70% with B = A+10%, 15 

A+20%, A+30%; NA = NB, NA ≠ NB (for N = 10, 25);  
A =  

B,  
A ≠  

B
 (for 𝑅 = 0.1, 0.2, 0.3, 0.4) over NS = 500, keeping 

the remaining values of the reference region (i.e. n = 30).  

2.3. Evolution of the variability for the Z average with respect to the degree of regional heterogeneity 

The third step of the assessment of Z is the analysis of the evolution of the variability of the average value of Z as a function 

of the degree of regional heterogeneity. The aim is to determine the capability of Z to accurately rank regions according to 20 

their degree of heterogeneity when it is summarised as an average of the Z values obtained for several (sub)regions that are 

obtained by a given delineation method. This provides an assessment of its capability to compare results from several 

delineation methods. This is a twofold analysis. Firstly, a monotonic relation should exist between the average Z and the 

degree of heterogeneity, as explained in Sect. 2.1. Secondly, the variability of the average Z along such a monotonic relation 

should be small enough to not affect a proper ranking of the regions.  25 

We consider two regions A and B, without loss of generality. The idea is that (sub)regions delineated by a given method 

should theoretically entail different  
𝑅 values ( 

A
 ≠  

B), having similar or different values of other characteristics (i.e. NA ≠ 

NB or NA = NB). In order to be able to evaluate the behaviour of the Z average, the same degree of heterogeneity is considered 

for both regions (A = B = ), as under this assumption Z values should be similar. The procedure is the following: NS = 500 

simulated regions A and B with A = B =  and given values NA,  
A and NB,  

B are generated, obtaining for each simulation 30 

the average of Z over the two regions. These averages are aggregated into their mean value over Ns as representative value. 
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The representative value is obtained for 22 cases as a result of combining: NA = 10, 25; NB = 10, 25; and 
R
 = 0.1, 0.2, 0.3, 

0.4 with  
A ≠  

B, keeping the remaining values of the reference region (i.e. n = 30). Then, the variability of the set of 

representative values of the Z average is analysed through a boxplot for the given . The aforementioned procedure is 

performed for each  = 0%, 10%,…, 90%, 100%, obtaining a boxplot for each  value. For a given , Z is better as the 

variability of the corresponding set of representative values is smaller, since similar values of Z should be expected due to A 5 

= B. Then, Z is better as the interquantile range is shorter, where the interquantile range is the box of the boxplot. For 

varying , Z is better as it does not imply overlapping of the interquantile ranges for different  values, which leads to a more 

appropriate ranking of the regions. 

2.4. Effect of discordant sites 

The fourth step of the assessment of Z is the analysis of the effect of discordant sites in a region. The aim is to check the 10 

capability of Z to show a progressive variation of its value as a consequence of a progressive change in the degree of regional 

heterogeneity, induced here by replacing given ‘homogeneous’ sites by given ‘discordant’ sites in a region. Both the effect of 

the ‘nature’ of the discordant sites, characterised by the L-CV  
𝑑 and L-skewness coefficient 3

𝑑  of their parent distribution, 

and the effect of the number of such discordant sites (k) are considered.  

The procedure is described below. Note that the values of the factors used in this section are selected to facilitate the 15 

graphical representation. Thus, a homogeneous region (i.e.  = 0%) with N  = 20,  
𝑅  = 0.25 and n = 30 is considered as the 

initial region. Then, k of its sites (with k = 1,…, N/2) are replaced by k discordant sites belonging to a parent distribution 

characterised by  
𝑑, with d = 0% within the group of discordant sites. The analysis is performed for  

𝑑= 0.1, 0.2, 0.25, 0.3, 

0.4. Remark that  
𝑅 = 0.25 is considered for the homogeneous region so that the discordant sites are not ‘discordant’ at the 

midpoint of the range used for  
𝑑 (i.e. at  

𝑅 =  
𝑑 = 0.25). The procedure is repeated for NS = 500 simulations of the initial 20 

homogeneous region, estimating a mean value of Z over Ns for each ( 
𝑑, k) pair. For the region formed by ‘homogenous’ and 

‘discordant’ sites, named as mixed region, Z is expected to be larger for larger k values. Indeed, a larger number of 

discordant sites in the region should increase the degree of regional heterogeneity. Also, Z is expected to be larger as the 

difference between  
𝑅 and   

𝑑  gets larger, since the addition of sites with a ‘larger discordance’ should increase the degree of 

regional heterogeneity. On the other hand, for the sub-region formed by the sites belonging to the initial homogeneous 25 

region, Z is expected to keep the same values regardless of the value of k, which in this case is the number of initial sites 

removed. The degree of regional heterogeneity should be relatively constant in this case, since all the sites belong to the 

same initial homogeneous region. Note that a mixed region can be seen as a sort of bimodal region used in other studies (e.g. 

Chebana and Ouarda, 2007). 

 30 
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3 Heterogeneity measures 

The aim of this section is to present and develop heterogeneity measures based on different approaches to be assessed by the 

procedure proposed in Sect. 2. Heterogeneity measures are selected as a result of a general and comprehensive literature 

review in a number of fields including hydrology. We can distinguish three types of measures: (a) known in RHFA; (b) 

derived from recent approaches in RHFA; and (c) used in other fields and adapted here to the regional hydrological context. 5 

Therefore, a total of eight measures are considered.  

3.1. Measures known in RHFA 

The first group consists of the well-known statistics H, V, H2 and V2 (Hosking, 2015), as well as the k-sample Anderson-

Darling (AD) statistic (Scholz and Stephens, 1987; Scholz and Zhu, 2015).  

Even though H is not properly defined as a heterogeneity measure for ranking the degree of heterogeneity of several regions 10 

(see Sect. 1), it is considered in this study because it is commonly adopted in regional analysis. As the aim of this study is to 

provide a general heterogeneity measure, its associated distribution-free statistic V is also considered. Specifically, V is a 

statistic of the dispersion of the sample L-CV t in a region, expressed as: 

𝑉 = √
∑ 𝑛𝑖(𝑡𝑖 − 𝑡𝑅)2𝑁

𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

, (1) 

with  

𝑡𝑅 =
∑ 𝑛𝑖𝑡

𝑖𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

,     (2) 

where 𝑡𝑖 is the sample L-CV at site i and 𝑡𝑅 is its associated regional average. H is a measure of the variability of t in the 15 

region compared with that expected for simulated homogeneous regions. It is built by normalising V by its mean 𝜇𝑉 and 

standard deviation 𝜎𝑉: 

𝐻 =
𝑉 − 𝜇𝑉

𝜎𝑉

,        (3) 

where 𝜇𝑉 and 𝜎𝑉 are obtained from NH = 500 simulated homogeneous regions with the same n and N as the given region, 

generated from a kappa distribution fitted to the regional average L-moment ratios. 

The extensions of V and H by considering not only t but also the sample L-skewness coefficient 𝑡3, traditionally known as 𝑉2 20 

and 𝐻2, are also included in this study. Their inclusion is motivated by recent results regarding the usefulness of H2 for 

testing homogeneity when considering different thresholds from those of H (Wright et al., 2014): 

𝑉2 =
∑ 𝑛𝑖√(𝑡𝑖 − 𝑡𝑅)2 + (𝑡3

𝑖 − 𝑡3
𝑅)

2𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

, 
(4) 
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𝐻2 =
𝑉2 − 𝜇𝑉2

𝜎𝑉2

, (5) 

where 𝑡3
𝑖  is the sample L-skewness coefficient at site i and 𝑡3

𝑅 is its associated regional average. 𝑡3
𝑅 is defined analogous to 𝑡𝑅 

in Eq. (2). In order to avoid results conditioned on the given value of  𝑡 
𝑅 and 𝑡3

𝑅, 𝑉 and 𝑉2 are standardised here by their 

regional values, defining 𝑉′ and 𝑉2
′
 respectively as: 

𝑉′ =
√

∑ 𝑛𝑖 (
𝑡𝑖 − 𝑡𝑅

𝑡𝑅 )
2

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

 
(6) 

𝑉2
′ =

∑ 𝑛𝑖√(
𝑡𝑖 − 𝑡𝑅

𝑡𝑅 )
2

+  (
𝑡3

𝑖 − 𝑡3
𝑅

𝑡3
𝑅 )

2

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

 

(7) 

The AD statistic, which is a rank-based statistic based on comparing the at-site empirical distributions with the pooled 

empirical distribution of the data, is also included in this first group: 5 

𝐴𝐷 =
1

𝑀
∑

1

𝑛𝑖

𝑁

𝑖=1

∑
(𝑀𝑚𝑖𝑗 − 𝑗𝑛𝑖)

2

𝑗(𝑀 − 𝑗)

𝑀−1

𝑗=1

, (8) 

where 𝑀 = ∑ 𝑛𝑖
𝑁
𝑖=1  and 𝑚𝑖𝑗 is the number of observations in the i

th
 sample not greater than 𝑦𝑗, where 𝑦1 < ⋯ < 𝑦𝑀 is the 

pooled ordered sample of the data, which in the regional context entails considering the data of each site first divided by its 

corresponding mean and then ordered. The AD statistic has already been considered in several studies. Viglione et al. (2007) 

assessed its behaviour as a homogeneity test statistic, recommending its use when 𝑡3
𝑅 > 0.23. Wright et al. (2015) evaluated 

its performance as a heterogeneity measure regarding its ability to be a surrogate of the quantile error, yet obtaining a weak 10 

performance partially attributed to a possible influence of the procedure used for estimating errors.  

3.2. Measures derived from recent approaches in RHFA 

The second group is represented by a measure derived from a relatively novel approach in which the confidence interval for 

the at-site L-CV 𝑡𝑖 (with i: 1,…N) is estimated and compared with 𝑡𝑅. The focus is to evaluate how often the latter is 

included in such confidence intervals in order to assess if differences between 𝑡𝑖 and 𝑡𝑅 can be attributed to sample 15 

variability or to regional heterogeneity.  

Viglione (2010) proposed a procedure for obtaining the confidence interval for L-CV without considering a given parent 

distribution of the data, applying it to a didactic illustration for comparing several regional approaches. The procedure is 

summarised below: the variance of the sample L-CV t, var(t), is estimated according to Elamir and Seheult (2004) which is 

implemented in Viglione (2014); simple empirical corrections are applied on t and var(t) based on the values of 𝑡3 and n; and 20 

the confidence interval for t is then obtained from a log-Student’s distribution considering corrected values of t and var(t). 
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For instance, for a 90% confidence interval, a region is considered as heterogeneous if 100 – (P05 + P95) ≪ 90%, where P05 

(P95) is the percentage of sites for which 𝑡 
𝑅 is below (above) the confidence interval for 𝑡𝑖. The larger (P05 + P95) is, the 

larger the regional heterogeneity will be. Das and Cunnane (2011) obtained such a confidence interval based on simulations 

from a GEV distribution, with the aim of evaluating if a usual method to select catchment descriptors for delineating regions 

in Ireland provided homogeneous regions. The number of sites for which 𝑡 
𝑅 is outside the 𝑡𝑖 confidence intervals is 5 

considered as a measure of heterogeneity, also expressed as a percentage of sites.  

In the present study, the heterogeneity measure considered regarding this approach is named as PCI and defined as the total 

percentage of sites in the region for which 𝑡 
𝑅 is outside the 90% confidence interval for 𝑡 

𝑖. As the parent distribution of the 

data is unknown in practice, such a confidence interval is estimated following the aforementioned distribution-free approach.  

3.3. Measures used in other fields and adapted here to the regional hydrological context 10 

The last group consists of the Gini index (GI) (Gini, 1912; Ceriani and Verme, 2012), which is a measure of inequality of 

incomes in a population commonly used in economics; and of a measure based on the entropy-based Kullback-Leibler (KL) 

divergence (Kullback and Leibler, 1951), which estimates the distance between two probability distributions and is used for 

different purposes in a number of fields including hydrology (e.g. Weijs et al., 2010).  

The definition of the GI is usually given according to the Lorenz curve (Gastwirth, 1972), but it can be expressed in other 15 

ways. Specifically, the sample GI: 

𝐺𝐼 =
∑ ∑ |𝑥𝑖 − 𝑥𝑗|𝑛

𝑗=1
𝑛
𝑖=1

2𝑛2𝜇
, (9) 

corrected for short sample sizes can be defined as (Glasser, 1962; Zeileis, 2014): 

𝐺𝐼 =
∑ (2𝑖 − 𝑛 − 1)𝑥𝑖:𝑛

𝑛
𝑖=1

𝑛(𝑛 − 1)𝜇
, (10) 

where 𝑥𝑖:𝑛 are the sample order statistics and 𝜇 is their mean. Theoretically, GI ranges from zero to one. The former is 

obtained when all the 𝑥𝑖 values are equal, and the latter is given when all but one value equals zero (in an infinite 

population). Note that GI is connected with the L-moments as both are based on sample order statistics. Indeed, 𝐺𝐼 =20 

𝐺𝑀𝐷/2𝜇 (for 𝜇 > 0), where GMD is the Gini’s mean difference statistic (Yitzhaki and Schechtman, 2012); and 𝐺𝑀𝐷 =

2𝑙2, where l2 is the second sample L-moment (Hosking and Wallis, 1997). Hence, GI corresponds to the sample L-CV t 

(Hosking, 1990), which implies that if GI is applied on the observations at site i, the result is 𝑡 
𝑖. In order to adapt GI to the 

regional hydrological context, in this study GI is applied on 𝑡 
𝑖 over sites, providing a measure of the inequality, or 

variability, of 𝑡 
𝑖 in the region. Therefore, the measure considered in this study is 𝐺𝐼(𝑡𝑖, 𝑖 = 1, … , 𝑁):  25 

𝐺𝐼 =
∑ (2𝑖 − 𝑁 − 1)𝑡𝑖:𝑛

𝑁
𝑖=1

𝑁(𝑁 − 1)𝑡̅
, (11) 
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where 𝑡𝑖:𝑛 are the sample order statistics, 𝑡̅ is their mean, and the number of sites N corresponds to the data length of 𝑡. Note 

that 𝐺𝐼(𝑡𝑖 , 𝑖 = 1, … , 𝑁) is equivalent to 𝑡(𝑡𝑖, 𝑖 = 1, … , 𝑁). Also, note that this is somehow analogous to the approach based 

on moments used in early studies (e.g. Stedinger and Lu, 1995), where the coefficient of variation (𝐶𝑣 = 𝜎 𝜇⁄ ) of the 

coefficient of variation of the data (i.e. 𝐶𝑣(𝐶𝑣𝑖 , 𝑖 = 1, … , 𝑁)) was used for building simulated regions; defining 

homogeneous regions for 𝐶𝑣(𝐶𝑣𝑖) = 0 and extremely heterogeneous regions for 𝐶𝑣(𝐶𝑣𝑖) ≥ 0.4.  5 

The KL divergence (so-called relative entropy) of the probability distribution P with respect to Q is defined as: 

𝐾𝐿(𝑃||𝑄) = ∫ 𝑝(𝑥)ln[𝑝(𝑥)/𝑞(𝑥)] 𝑑𝑥 (12) 

where p and q are the density functions. The expression related to the discrete case is the following (e.g. Hausser and 

Strimmer, 2009) 

𝐾𝐿(𝑃||𝑄) = ∑ 𝑃𝑚ln (
𝑃𝑚

𝑄𝑚

)
𝑚

 (13) 

for which nonparametric versions of the probabilities P and Q may be considered, such as a kernel density function, in order 

to avoid subjectivity in selecting a given parametric probability distribution. 𝐾𝐿𝑖𝑗  can then be defined as the KL divergence 10 

of the probability distribution at site i with respect to the probability distribution at site j, where 𝐾𝐿𝑖𝑗 ≠ 𝐾𝐿𝑗𝑖 . The 

dissimilarity matrix of the region is obtained by computing the KL divergence between sites as:  

𝐷𝐾𝐿 =  (

𝐾𝐿11 … 𝐾𝐿1𝑁

⋮ 𝐾𝐿𝑖𝑗 ⋮

𝐾𝐿𝑁1 … 𝐾𝐿𝑁𝑁

) (14) 

The degree of regional heterogeneity is then evaluated by ‖𝐷𝐾𝐿‖, which in this study is considered as the absolute column 

sum normalized norm: 

‖𝐷𝐾𝐿‖ =  
𝑚𝑎𝑥𝑗 ∑ |𝐾𝐿𝑖𝑗|𝑖

𝑁
 (15) 

4 Results 15 

Simulation results obtained by the application of the proposed assessment procedure (Sect. 2) to the considered 

heterogeneity measures (Sect. 3) are presented in this section. Note that a summary of the results obtained from each step is 

presented in Table 1.  

4.1. Sensitivity analyses   

Results of the effect of varying factors defining a region (Sect. 2.1) are presented through boxplots and mean values of the 20 

heterogeneity measure over Ns = 500 simulations of the corresponding region, in order to show complete information. 
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Results for 
R 

= 0.2 refer to those related to the reference region. Figure 1 shows that all the considered measures show a 

good behaviour regarding the heterogeneity rate , as their values increase with . This dependence is less pronounced for 𝐻2 

and  𝑉2
′, which are the measures that depend on both t and 𝑡3; and for AD and ‖𝐷𝐾𝐿‖, which are based on the whole 

information. 

The effect of N on the considered measures is shown for 
R 

= 0.2 when  = 0% (i.e. ‘perfect’ homogeneous regions) and  = 5 

50% in Figs. 2 and 3, respectively. In both cases, it is found that 𝑉′, 𝑉2
′, PCI and GI are not affected by N, although they show 

some departure from their constant Z mean value and a larger variability (i.e. larger box) when N ≤ 10. In this regard, Das 

and Cunnane (2012) also found an effect for N < 10 on quantile error measures (considering n = 35). In general this effect is 

less marked for GI when  = 0% (Fig. 2c,d) and for 𝑉′and 𝑉2
′ when  = 50% (Fig. 3a,b).  

It is also found that results for H, and to a lower degree for 𝐻2, change depending on the value of . Both measures behave 10 

correctly for   = 0% (Fig. 2a,b); yet they depend on N for  = 50% (Fig. 3a,b). This is likely due to the nature of H and 𝐻2 as 

homogeneity test statistics. Note that this undesirable effect increases as  increases (e.g. Fig. 4). ‖𝐷𝐾𝐿‖ does not behave 

correctly neither for  = 0% nor  = 50%, as it depends on N. The same holds for AD, for which such dependence is higher.  

The influence of varying regional average L-moments is shown by comparing the Z mean values for 
R 

= 0.4 with those 

previously obtained for 
R 

= 0.2. Z mean values varying  are displayed in Fig. 1b,d. In this regard, 𝑉2
′ and AD are shown not 15 

to be suitable, as results for 
R 

= 0.2 and 
R 

= 0.4 varying  are far from each other. H and 𝐻2 work worse for higher degrees 

of regional heterogeneity than for smaller ones; whereas 𝑉′, GI and ‖𝐷𝐾𝐿‖ show the opposite behaviour with an overall 

better performance of 𝑉′ and GI. PCI presents a favorable similar behaviour for both small and high . Results for Z mean 

values varying N are displayed for  = 0% in Fig. 2b,d; and for  = 50% in Fig. 3b,d. In both cases 𝑉2
′ and AD present a 

similar bad behaviour to the one shown in Fig. 1b,d. A suitable behaviour is found for 𝑉′, PCI and GI for  = 50%, while a 20 

worse behaviour is found for H, 𝐻2 and ‖𝐷𝐾𝐿‖ (Fig. 3b,d). Such a behaviour of H, 𝐻2 and ‖𝐷𝐾𝐿‖ is also shown for  = 0% 

(Fig. 2b,d), for which the remaining measures also present similar bad results. In this regard, it is important to remark that no 

‘perfect’ homogeneous regions exist in reality (Stedinger and Lu, 1995). And that according to the practical threshold H < 2, 

commonly used for considering a region as homogeneous enough to perform a regional analysis, even regions with  = 50% 

may be taken as homogenous in practice (see values of H for  in Fig. 1a). Hence, for the purpose of the assessment of the 25 

regional heterogeneity degree, the behaviour of the measures for  = 50% is more relevant than for  = 0%. 

Finally, the effect of varying the record length n for  = 0% and  = 50% is shown in Fig. 5. Recall that it is expected that 

increasing n affects Z, as more information of the at-site distributions is available in such a case. In this regard, it is found 

that the measures H, 𝐻2, AD and PCI are not (or slightly) affected by n when  = 0%, but they highly increase their values as 

n increases when  = 50%. Whereas 𝑉′, 𝑉2
′, GI and ‖𝐷𝐾𝐿‖ are affected by n when  = 0%; becoming less affected when  = 30 

50%, by decreasing less their values as n increases. As a result, 𝑉′and GI are the only measures that become relatively stable 

for a given data length. Such a data length is around n = 30, which is a value usually considered in practice (e.g. Hosking 
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and Wallis, 1997, page 134; Chebana and Ouarda, 2009). It can be mentioned that for a very small data length (n = 10), the 

approximation used in PCI for estimating var(t) was not reliable. Nevertheless, this issue is not relevant since such a data 

length is too short to be considered in practice, and such values do not affect the overall interpretation of the results.   

As a result of the aforementioned sensitivity analyses (see Table 1 for a summary), 𝑉′, PCI and GI are considered as 

potentially suitable heterogeneity measures. Thus, the following steps of the assessment procedure are only applied to these 5 

measures. Results of H are also included for comparison purposes. 

4.2. Success rate 

The ability of the measures to identify the most heterogeneous region between two regions A and B is shown via the success 

rate SR (Sect. 2.2). A summary of the results obtained for  
A

 =  
B and  

A ≠  
B (with A < B), when considering several 

values of N and  for each region is displayed in Table 2 to facilitate their interpretation. Note that each combination  
A  vs. 10 

 
B corresponds to a total of 48 cases obtained by varying N and . Results for a small difference between  

𝑅  values, 

characterised by  
A  = 0.2 ≠  

B = 0.3 and vice versa; and for a large difference, characterised by  
A  = 0.1 ≠  

B = 0.4 and 

vice versa, are displayed as representative of the behaviour of the measures. Note that the summarised information reflects 

the main conclusions extracted from the partial results.  

The SR average is shown as a notion of the overall behaviour of the measures. Recall that the larger SR is, the better Z will 15 

be. When  
A

 =  
B the SR average of H, 𝑉′ and GI are comparable, with 𝑉′ and GI leading to the largest values; while PCI 

leads to the lowest ones. When  
A <  

B  the largest SR average is obtained for 𝑉′ and is very closely followed by GI. Yet, in 

this case H presents a worse behaviour, which is similar to that of PCI. When  
A >  

B the situation changes, with H leading 

to the largest values. Yet, the difference between the values obtained by 𝑉′ (or GI) and H is less marked than when  
A <  

B. 

Note that the larger the difference between  
A and  

B is, the larger the difference between the SR average of H and 𝑉′ (or GI) 20 

is; whereas the value of PCI remains almost constant. Therefore, although PCI does not obtain the greatest values in any case, 

it outperforms H or GI (and 𝑉′) when  
A ≪  

B or when  
A ≫  

B, respectively, i.e. for high differences between  
A and  

B. 

The best results for the total SR average are obtained by GI, followed by 𝑉′.  

The SR minimum and SR maximum are displayed as a notion of the variability of the SR results (Table 2). Results related to 

the SR minimum are analogous to those obtained by the SR average; giving H an overall worse behaviour. This highlights 25 

the low ability of H to identify the most heterogeneous region in certain circumstances. Note that the overall behaviour of H 

regarding SR is partially due to existing trends regarding N and  
𝑅. H obtains larger heterogeneity values as N increases and 

as  
𝑅 decreases (as shown in Fig. 3b), entailing an ‘unfounded’ better behaviour when  

A >  
B and NA < NB, and vice versa. 

Also note that all measures have difficulties obtaining a large SR minimum when  
A >  

B. This includes H also, even though 

it obtained a good SR average in such a situation. This arises from the fact that, in such a case, the region with the lowest 30 

degree of heterogeneity (region A) is associated with a larger  
𝑅 entailing a larger sample variability, and complicating its 

identification as the less heterogeneous region. SR maximum values show that even though the maximum difference between 
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A and B considered in the analysis is 30%, all measures obtain (in certain circumstances) a SR equal or close to 100%. In 

summary, GI obtains the best results for the SR analysis followed by 𝑉′. 

4.3. Evolution of the variability of the Z average with respect to the degree of regional heterogeneity 

The variability of the heterogeneity measures as a function of the degree of regional heterogeneity, represented by , is 

shown in Fig. 6. The boxplot of the 22 representative (mean over Ns = 500) values of Z obtained from cases in which a given 5 

region A and a given region B with the same  but different characteristics are considered is shown for varying values of  in 

the x-axis (see Sect. 2.3). As expected from the results of Fig. 1, heterogeneity measures in Fig. 6 increase with , showing a 

monotonic positive dependence. Regarding their variability along such a monotonic relation, H presents a different 

behaviour from the rest of the measures. It shows a strong increasing variability as  increases. Then, in this case, H overlaps 

its interquantile ranges from  = 70% to 100%. This behaviour may imply an unappropriated ranking of the regions with 10 

these high values of the heterogeneity rate . Indeed, overlapped values cannot be considered significantly different, whereas 

they correspond to two different  values. Such behaviour is not seen for the other considered measures. In this regard, an 

overall favorable larger distance between interquantile ranges is found for 𝑉′, followed by PCI and then GI. However, the 

four considered measures present an overlapping for  = 0% and 10%. This may imply an unappropriated ranking of the 

regions related to these very small values of , yet those regions are less common in practice. In summary, 𝑉′ obtains the best 15 

performance for the variability evolution analysis. It presents a small variability for a given  value; and it almost presents no 

overlapping between interquantile ranges for varying . 

 

4.4. Effect of discordant sites 

The effect of discordant sites (Sect. 2.4) is shown in Fig. 7. The mean values of the heterogeneity measures over Ns = 500 20 

are obtained when replacing k sites (with k = 1,…, 10) in an initially homogeneous region (with N = 20) by k discordant sites 

belonging to a given parent distribution defined by 𝑑 . For the mixed region formed by sites from both  
𝑅 and  

𝑑, the overall 

results confirm that the considered measures involve larger values of Z for larger k values, as a result of replacing a larger 

number of discordant sites in the region; and larger values of Z as the difference between  
𝑅 and  

𝑑  increases, as a result of 

replacing sites with a larger discordance (Fig. 7a).  25 

However, when   
𝑑 >  

𝑅 (Fig. 7b) the measures face some difficulties in ranking the degree of heterogeneity for high values 

of k. This is due to the larger sample variability entailed by the discordant sites in such a case, which makes the whole mixed 

region seem less heterogeneous. Note that this is also the reason of the lack of asymmetry of the results regarding the vertical 

line at the midpoint of the x-axis (i.e.  
𝑑  = 0.25 =  

𝑅). Nevertheless, not all measures are equally affected by this issue. GI 

obtains the best results, as for instance it is able to differentiate the degree of heterogeneity for k ≤ 8 when  
𝑑  = 0.35 and 0.4. 30 

It is followed by PCI, which behaves properly for k ≤ 8 when  
𝑑  = 0.35 and for k ≤ 7 when  

𝑑  = 0.4; and by 𝑉′, which obtains 
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adequate results for k ≤ 7 when  
𝑑  = 0.35 and k ≤ 6 when  

𝑑  = 0.4. The worst results are obtained by H, which only behaves 

properly for k ≤ 6 when  
𝑑  = 0.35 and k ≤ 4 when  

𝑑  = 0.4. Results for the sub-region formed by the remaining (N - k) sites 

of the initial homogeneous region (Fig. 7a) support the results in Fig. 2, as H and GI are practically not affected by the 

number of sites of the homogeneous region, while 𝑉′ and PCI present a slight decrease in their heterogeneity values as the 

number of sites (N - k) decreases. In summary, GI presents the best results for the analysis of discordant sites.  5 

5 Discussion 

Overall, GI can be considered as the best heterogeneity measure among all the evaluated measures, closely followed by 𝑉′ 

(see a summary in Table 1). However, as expected, none of the measures are perfect, due to their inability to perfectly fulfill 

all the desirable properties in practice. GI presents the advantage of being computed as a measure of the standardised mean 

distance between pairs of 𝑡 
𝑖 values. Hence, it does not depend on any assumptions concerning parameters or parent 10 

distributions. 𝑉′ is similar but it specifically depends on the estimate of the regional average 𝑡𝑅, as it compares it to each 𝑡 
𝑖 

value. Thus, due to the similar but slightly better results obtained by GI and its widely accepted use in other fields, the use of 

GI would be preferable in practice.  

H is by nature the statistic of a homogeneity test. Hence, it is defined to identify whether a given region can be considered as 

homogeneous or not, not to compare the heterogeneity degree of several regions. Note that this is also valid for other test 15 

statistics (e.g. AD). As a consequence of the intrinsic disadvantages of H (see Sect. 1) and the obtained results, the use of H 

as a heterogeneity measure for ranking regions is not recommended. The unsatisfactory results obtained for 𝑉2
′ and 𝐻2 could 

be related to the way in which t and 𝑡3 are combined (see Sect. 3), which may not be appropriate for assessing the degree of 

regional heterogeneity. The unsuitable results associated with ‖𝐷𝐾𝐿‖ could be related to considering the whole information 

of the data, which may mask the effect of factors favouring heterogeneity. It should be noted that other norms aside from the 20 

one in Eq. (15) were considered, but they did not lead to better performances. Further research should focus on the 

development of a better adaptation of the entropy-based measures to estimate the degree of regional heterogeneity.   

The PCI measure is obtained without assuming a given parent distribution of the data; although it considers a log-Student 

distribution for estimating the L-CV confidence interval. Also, even though it depends partially on the selected confidence 

level, mean PCI values over Ns = 500 for different confidence levels (90% and 95%) were found to be highly correlated (not 25 

shown). This fact removes subjectivity from the use of PCI as a heterogeneity measure, as for such a purpose only the ranking 

of values is needed. It is also important to highlight the stable performance of PCI regardless of the value of  
𝑅. This makes 

PCI outperform GI and 𝑉′ for identifying the most heterogeneous region when such a region has a much lower  
𝑅 than others 

to be compared with (see Table 2). As a consequence, PCI and GI could be used together in practice as two different and 

complementary criteria. This is common in other applications; for instance several criteria are commonly applied when 30 

ranking candidate distributions (e.g. the Akaike information criterion and the Bayesian information criterion). It is important 

to mention that the use of PCI as a homogeneity test in practice may lead to the false rejection of homogeneous regions. 
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Indeed, even when a region is ‘perfectly’ homogeneous ( = 0%) the mean value of PCI may indicate slight heterogeneity 

(e.g. it is slightly larger than 10% in Fig. 1).  

As indicated in Sect. 1, the heterogeneity measures selected in this study may be used for the assessment of the degree of 

heterogeneity of regions obtained through the use of different delineation methods. When a region is divided into several 

sub-regions by a given delineation method, the GI (or PCI) value can be evaluated at each sub-region. Then, the average 5 

value can be used to compare several delineation methods applied on the given region. The best delineation method will be 

the one with the lowest GI (or PCI) value for the region of study. It is important to note that a heterogeneity measure should 

not be used as a decision variable for the delineation of regions, as it would imply using redundant information at different 

steps of the regional analysis. The heterogeneity measure can also be used for evaluating the heterogeneity of a given region 

when particular sites are removed, with the aim of helping in the identification of homogeneous regions. For instance, if a 10 

region is found as heterogeneous by using a given test and by entailing a number of discordant sites, the heterogeneity 

measure can help in the identification of the ‘most homogeneous region’ as a result of removing different combinations of 

sites. However, it is important to highlight that physical reasoning has to be provided for removing a given (discordant) site. 

Thus the heterogeneity measure serves only as a facilitator for the identification of the site(s) to be further analysed (e.g. 

Viglione, 2010; Ilorme and Griffis, 2013).  15 

6  Conclusions 

Delineation of homogeneous regions is required for the application of regional frequency analysis methods such as the index 

flood procedure. The availability of an estimate of the degree of heterogeneity of these delineated regions is necessary in 

order to compare the performances of different delineation methods or to evaluate the impact of including particular sites. 

Due to the unavailability of a well-justified and generally recognised measure for performing such comparisons, a number of 20 

studies have relied on measures that are not well-defined or approaches that involve additional steps during the delineation 

stage of regional frequency analysis. 

In the present paper, a general framework is presented for assessing the performance of potential heterogeneity measures in 

the field of regional hydrological frequency analysis (RHFA), according to a number of desirable properties. The proposed 

four-step assessment procedure consists of: sensitivity analysis by varying the factors of a region; evaluation of the success 25 

rate for identification of the most heterogeneous region; estimation of the evolution of the variability for the heterogeneity 

measure average with respect to the degree of regional heterogeneity; and study of the effect of discordant sites. The 

procedure is applied on a set of measures including commonly used ones, measures that are derived from recent approaches, 

and measures that are adapted from other fields to the regional hydrological context. The assumption-free Gini Index (GI) 

frequently considered in economics and applied here on the L-variation coefficient (L-CV) of the regional sites obtained the 30 

best results. A lower performance was obtained for the measure of the percentage of sites (PCI) for which the regional L-CV 

is outside the confidence interval for the at-site L-CV. However, this measure was considered relevant because of its stable 
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behaviour regardless of the regional value of L-CV. The application of both measures is recommended in practice. The use 

of different criteria to determine the degree of regional heterogeneity can help adequately identify the sites to be further 

analysed for obtaining homogeneous regions. Further research efforts are necessary to develop robust and general 

heterogeneity measures in the field of RHFA.  
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Table 1. Summary of the results of the studied measures for the four-step assessment procedure. The behaviour of a 

given measure for each sensitivity analysis in step (i) is graded as: good (G), acceptable (A), bad (B) or unacceptable 

(U). Measures entailing an ‘unacceptable (U)’ behaviour are not assessed by the rest of steps; yet a complete 

assessment of H is performed for comparison purposes. For steps (ii), (iii) and (iv) considered measures are ranked 

from the best results (1
st
) to the worst results (4

th
).  5 

Measures 

(i) Sensitivity analyses 

(ii) Success 

rate (SR) 

(iii) Variability 

evolution 

(iv) Effect of 

discordant sites  
N 

 
𝑅  n 

 = 0%  = 50% 

H G G U B B 3
rd

 * 4
th

 *** 4
th

 

𝐻2 A G U B B - - - 

𝑉′ G A G A A 2
nd

 1
st
 3

rd
 

𝑉2
′ A A G U B - - - 

AD A U U U B - - - 

PCI G A A A B 4
th

 ** 2
nd

 2
nd

 

GI G G A A A 1
st
 3

rd
 1

st
 

‖𝐷𝐾𝐿‖ A U U B B - - - 

 

(*) High limitations for given circumstances; (**) Favorable stable values regardless of  
𝑅 ; (***) Unacceptable results. 
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Table 2. Summary of the success rate (SR) minimum, average and maximum of the considered measures (H, 𝑽′, PCI 

and GI), expressed in percentage, when comparing the heterogeneity of two regions A and B. For a given  
𝐀  and  

𝐁, 

such values are computed as the minimum, average and maximum of SR over 48 cases, respectively. For each case, 

SR is obtained as the mean over Ns = 500 simulations of two regions with n = 30 and given NA, NB, A and B. Values in 

bold indicate the measure obtaining the largest SR minimum, SR average and SR maximum, respectively.  5 

 
A  vs.  

B   
A   

B 
Minimum Average Maximum 

H 𝑉′ PCI GI H 𝑉′ PCI GI H 𝑉′ PCI GI 

 
A =  

B 
0.2 0.2 33 47 40 50 74.5 77.9 67.3 77.7 99 99 91 100 

0.3 0.3 36 46 34 51 72.2 74.4 65.1 75.2 98 94 87 98 

 
A <  

B 
0.1 0.4 7 69 36 57 58.8 86.4 61.4 85.7 87 98 83 98 

0.2 0.3 24 59 40 62 68.1 81.0 64.1 80.8 96 97 88 98 

 
A >  

B 
0.3 0.2 47 34 33 34 77.3 70.4 67.6 71.8 100 96 92 97 

0.4 0.1 33 14 26 15 80.5 61.0 69.1 63.3 100 94 95 99 

Total average: 30 45 35 45 71.9 75.2 65.8 75.7 97 96 89 98 
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Fig. 1. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (N = 15, 

n = 30 and 𝑹 = 0.2) varying the heterogeneity rate ; and (b) (d) comparison of the corresponding mean with the one obtained by 

considering 𝑹 = 0.4. 
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Fig. 2. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (n = 30 

and 𝑹 = 0.2), with a heterogeneity rate  = 0%, varying the number of sites N; and (b) (d) comparison of the corresponding mean 

with the one obtained by considering 𝑹 = 0.4. 

 5 

 

 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-136, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 5 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



25 

 

 

Fig. 3. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (n = 30 

and 𝑹 = 0.2), with a heterogeneity rate  = 50%, varying the number of sites N; and (b) (d) comparison of the corresponding mean 

with the one obtained by considering 𝑹 = 0.4. 

 5 

 

Fig. 4. Sensitivity analysis: mean of H and 𝑯𝟐 over Ns = 500 simulations of the reference region (n = 30 and 𝑹 = 0.2) for a 

heterogeneity rate  = 100%, varying the number of sites N. 
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Fig. 5. Sensitivity analysis: (a) (c) boxplots of the heterogeneity measures for Ns = 500 simulations of the reference region (N = 15 

and 𝑹 = 0.2), for a heterogeneity rate  = 0% and  = 50%, varying the data length n; and (b) (d) comparison of the corresponding 

mean for  = 0% and  = 50%. 
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Fig. 6. Boxplots of representative values of the heterogeneity measure average obtained for 22 cases, varying the heterogeneity rate 

 in the x-axis. For each case, such a representative value is obtained as the average between a given region A and a given region B 

over Ns = 500 simulations of the given regions, entailing the same  (i.e. A = B) but different characteristics (i.e. NA ≠ NB or NA = 

NB with  
𝐀

 ≠  
𝐁).  5 
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(a) 

 

(b) 

Fig. 7. Mean values of the heterogeneity measures over Ns = 500 simulations of a given homogeneous region with N = 20 sites, n = 5 
30 and 𝑹= 0.25, for which k sites are replaced by k discordant sites generated by a GEV with L-Cv 𝒅, varying 𝒅 in the x-axis: (a) 

full plot; and (b) zoom to the right part of the x-axis. 
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